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Knowledge of spatial variation of soil properties is im-
portant in precision farming and environmental mod-
elling. Spatial distribution of water content at field 
capacity (FC) and permanent wilting point (PWP) at 
different zones of a farm governs the available water 
for plant growth. These two soil hydraulic parameters 
play key roles in crop selection for different blocks of 
a farm, and in scheduling irrigation of crops in a field. 
In this study, spatial variation of bulk density organic 
carbon, silt and clay contents for two soil depths (0–15 
and 15–30 cm) in the agricultural farm of the Indian 
Agricultural Research Institute, New Delhi were 
quantified and the respective surface maps were pre-
pared through ordinary kriging. Particle size distribu-
tion shows better spatial correlation structure than 
bulk density and organic carbon content. Gaussian 
model fits well with experimental semivariogram of 
bulk density, and silt and clay contents. Hole-effect 
model was found to be the best to fit the experimental 
semivariogram of organic carbon content. Spatial cor-
relation structure for both surface (0–15 cm) and sub-
surface (15–30 cm) soil layer remains the same, but 
the magnitude of spatial correlation differs. Cross-
validation of the kriged map shows that spatial predic-
tion of basic soil properties using semivariogram pa-
rameters is better than assuming mean of observed 
value for any unsampled location. Pedo-transfer func-
tions were coupled with the surface map of basic soil 
properties to generate a map of water content at FC 
and PWP. Evaluation of spatial maps of θFC and θPWP 
showed reasonable accuracy of these two hydraulic 
parameters for farm-level or regional-scale applica-
tion. 
 
Keywords: Basic soil properties, ordinary kriging, pedo-
transfer functions, semivariogram. 
 
SOILS are characterized by high degree of spatial variabil-
ity due to the combined effect of physical, chemical or 
biological processes that operate with different intensities 
and at different scales1. Knowledge of the spatial varia-
tion of soil properties is important in several disciplines, 
including agricultural field trial research and precision 

farming. Reports have shown that there is large variabil-
ity in soil, crop, disease, weed and/or yield, not only in 
large-sized fields2–5, but also in small-sized fields6. In pre-
cision farming, the concept of ‘management zone’ was 
evolved in response to this large variability with the main 
purpose in efficient utilization of agricultural inputs with 
respect to spatial variation of soils and its properties7–9. 
Moreover, use of simulation models in designing and 
testing of different land-use management options in agri-
cultural farms increased substantially in the last few dec-
ades10. Therefore, an appropriate understanding of spatial 
variation of soil properties is essential for modelling at 
landscape scale. The most important way to gather know-
ledge in this aspect is to prepare soil maps through spatial 
interpolation of point-based measurements of soil proper-
ties. 
 Among different methods of spatial interpolation of soil 
properties, inverse distance weighing and ordinary kriging 
are most common11,12. From a theoretical standpoint, 
kriging is the optimal interpolation method13; however, 
its correct application requires an accurate determination 
of the spatial structure via semivariogram construction 
and model-fitting. At least 50 to 100 samples might be 
required to obtain a reliable semivariogram that correctly 
describes spatial structure14. Most of the studies showed 
the spatial variation of soil properties in plot or field scale 
(<100 ha area)15–20 or in regular transect grids21,22, but such 
information on farm or watershed scale with sparsely dis-
tributed irregular samples is meagre23. 
 Estimating semivariogram parameters of soil properties 
using geostatistical tools and further applying them to 
predict other soil properties using ordinary kriging is the 
general procedure to prepare soil maps1,13,21,24. Till now, 
majority of the studies have dealt with variation of soil 
properties over two-dimensional surfaces. However, soil 
properties also vary largely along the depths due to active 
soil-forming processes of eluviation–illuviation down the 
soil horizon25. Characterization of soil below the surface 
is also important for proper management of water and nu-
trient in the root zone and in a broader perspective, for 
modelling of environmental processes26. In agricultural 
fields, modelling water flow and nutrient transport for effi-
cient utilization of irrigation water and fertilizer needs in-
formation on surface as well as vertical variation of soil 
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properties. Therefore, full characterization of soil in three-
dimensional pedon needs the exploration of spatial struc-
ture behaviour of soil properties at different depths. 
 Water content at field capacity (FC) and permanent 
wilting point (PWP) are two most important hydraulic pa-
rameters which indicate plant-available soil water regime 
and help in scheduling irrigation to crops. Based on sur-
face maps of these two hydraulic parameters, crops with 
specific water requirements may be selected for different 
locations in a farm. Direct measurement of these two pa-
rameters at multiple locations and preparation of surface 
map is difficult, time-consuming and costly. Moreover, as 
hydraulic properties are controlled by several landform 
processes, these are highly dynamic under field condi-
tions. Alternately, these properties can be estimated from 
some basic soil properties using pedo-transfer functions 
(PTFs) in a non-spatial extent. Several region-specific 
PTFs have been developed throughout the world for esti-
mating hydraulic properties from basic soil properties. 
These PTFs can, therefore, be used in generating maps of 
required hydraulic parameters. 
 In this article, we explore the possibility of fitting semi-
variogram models from irregularly sampled soil properties 
of an agricultural farm extending 243 ha in area. Secondly, 
difference in spatial variation of basic soil properties for 
two soil depths has been examined. Finally, spatial maps 
of basic soil properties for two soil depths were prepared 
using ordinary kriging and the respective maps of basic 
soil properties were used to generate maps of soil hydrau-
lic parameters through linkage with suitable PTFs. 

Materials and methods 

Study area 

This study was carried out at the experimental farm of the 
Indian Agricultural Research Institute (IARI), New Delhi 
(28°37′–28°39′N, 77°8′30″–77°10′30″E, 217–241 m amsl). 
The climate is semi-arid, June being the hottest and January 
the coldest months. Mean maximum temperature during 
summer months (May–July) varies between 43.9°C and 
45°C. The temperature drops to a minimum of 5°C in 
January. Annual rainfall is 708.6 mm, of which 597 mm 
(84%) is received from June to September and the rest 
during winter months (November to March). 
 According to the soil survey report27, there are six soil 
series in the IARI experimental farm under two broad soil 
subgroups – Typic Haplustepts and Typic Ustifluvent. These 
series are named as Mehrauli, Palam, Holambi, Daryapur, 
Nagar and Jagat. Sandy loam is the dominant soil textural 
class in the farm. 

Soil sample collection and laboratory analysis 

Soil samples were collected from 50 sites of the IARI 
farm (243 ha) covering six soil series under two soil sub-

groups (Figure 1). From each site, disturbed and undis-
turbed soil samples were collected from two depths: 0–15 
and 15–30 cm. Core samplers with cylindrical cores of 
7.1 cm diameter and 7.1 cm length were used for undis-
turbed soil sample collection, while disturbed soil sam-
ples were collected in polythene bags and air-dried in the 
laboratory. Disturbed samples were ground and passed 
through a 2 mm sieve, and used to determine soil tex-
ture28, organic carbon and water content at FC (33 kPa) 
and PWP (1500 kPa)29. Undisturbed soil cores were oven-
dried at 105°C and used to determine bulk density (ρb)30. 

Spatial variability of soil properties 

Spatial variability is expressed by a semivariogram ˆ( ),hγ  
which measures1,24 the average dissimilarity between data 
separated by a vector h. It was computed as half the aver-
age squared difference between the components of data pairs: 
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where N(h) is the number of data pairs within a given 
class of distance and direction, z(xi) is the value of the 
variable at the location xi and z(xi + h) is the value of the 
variable at a lag of h from the location xi. 
 Experimental semivariogram value for each soil property 
was computed using GEOEAS (Geostatistical Environ-
mental Assessment Software) and plotted with lag dis-
tance h. During pair calculation for computing the semi-
variogram, maximum lag distance was taken as half of the 
minimum extent of sampling area to minimize the border 
effect. Lag increment was fixed as 100 m. In this study, 
omnidirectional semivariogram was computed for each 
soil property because no significant directional trend was 
observed. The computed semivariogram values ˆ[ ( )]hγ  for 
corresponding lag (h) were fitted with available theoreti-
cal semivariogram models using weighed least square 
technique through solver function of MS Excel spread-
sheet31. Weight for each lag was assigned according to 
the number of pairs for that particular lag. Best-fit model 
with lowest value of residual sum of squares was selected 
for each soil property and each soil depth. Three commonly 
used semivariogram models were fitted for each soil 
property. These are the spherical, exponential and Gaus-
sian models. In the case of fitting the semivariogram for 
organic carbon content, hole-effect model was also in-
cluded. Expressions for different semivariogram models 
used in this study are given below. 
 
Spherical model: 
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Figure 1. Location of sampling points in the experimental farm of the Indian Agricultural Research Institute, New Delhi. 
 
 
 
Exponential model: 
 

 0 1( ) 1 exp hh C C
a

γ ⎡ ⎤⎧ ⎫= + − −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦
 for h ≥ 0. (3) 

 
Gaussian model: 
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 Hole-effect model: 
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In all these semivariogram models, nugget, sill and range 
were expressed by C0, (C + C0) and a respectively. In the 
case of exponential and Gaussian models, a represents the 
theoretical range. Practical range for these two semi-
variogram models was calculated as the lag distance for 
which the semivariogram value was 95% of sill. 

Ordinary kriging of soil properties 

Surface maps of basic soil properties were prepared using 
semivariogram parameters through ordinary kriging. Ordi-
nary kriging estimates the value of soil attributes at un-
sampled locations, z(u) using weighted linear combinations 
of known soil attributes z(uα) located within a neighbour-
hood W(u) centred around u. 
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where λα is the weight assigned to datum z(uα) located 
within a given neighbourhood W(u) centred on u. The 
n(u) weights are chosen so as to minimize the estimation 
or error variance 2

E ( ) Var{ *( ) ( )}u z u z uσ = −  under the 
constraint of unbiasedness of the estimator. Kriged map 
for each soil property was prepared using geostatistical 
analysis tool of ArcGIS 9.1. 
 Accuracy of the soil maps was evaluated through 
cross-validation approach32. Among three evaluation in-
dices used in this study, mean absolute error (MAE), and 
mean squared error (MSE) measure the accuracy of pre-
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diction, whereas goodness-of-prediction (G) measures the 
effectiveness of prediction. MAE is a measure of  
the sum of the residuals (e.g. predicted minus ob-
served)22, 
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where ˆ( )iz x  is the predicted value at location i. Small 
MAE values indicate few errors. The MAE measure, 
however, does not reveal the magnitude of error that 
might occur at any point and hence MSE will be calcu-
lated, 
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Squaring the difference at any point gives an indication 
of the magnitude, e.g. small MSE values indicate more 
accurate estimation, point-by-point. The G measure gives 
an indication of how effective a prediction might be, rela-
tive to that which could have been derived from using the 
sample mean alone33, 
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where z  is the sample mean. If G = 100, it indicates per-
fect prediction, while negative values indicate that the 
predictions are less reliable than using sample mean as 
the predictors. 

Preparation of surface map for water content at 
field capacity and permanent wilting point 

Spatial maps on water content at field capacity (θFC) and 
permanent wilting point (θPWP) were prepared through 
linking soil maps on basic properties and PTFs. The PTFs 
for θFC and θPWP were developed from the available soil 
data in benchmark soils of India34. The performance of 
several existing PTFs was evaluated and compared with 
the developed PTFs using the measured water-retention 
data from the study area. It was found that the following 
PTFs developed from benchmark soils of India performed 
the best. 
 
 θFC(%, w/w) = 21.931 – 0.20564 × sand + 0.175 
       × clay + 4.6737 × OC (R2 = 0.89), (10) 
 
 θPWP (%, w/w) = 8.7255 – 0.092946 × sand 
        + 0.15944 × clay (R2 = 0.78), (11) 

where sand represents per cent sand content (0.05–2 mm), 
clay represents per cent clay content (< 0.002 mm) and 
OC is the per cent organic carbon content in the soils. 
These PTFs were used to convert the soil map of basic 
properties to hydraulic properties. Spatial prediction un-
certainty of the developed map of θFC and θPWP was cal-
culated by comparing them with their observed values at 
50 locations of the study area. 

Results and discussion 

Descriptive statistics 

Mean (μ) and standard deviation (σ) of soil properties are 
presented in Table 1. Before calculating the descriptive 
statistics, each soil property was checked for normality  
using the Kolmogorov–Smirnov (K–S) test statistics at 
5% level of significance. Logarithmic transformations 
were made for silt content to fit it in normal distribution. 
Except silt content, other soil properties were fitted in 
normal distribution. Average bulk density for surface (0–
15 cm) and subsurface (15–30 cm) layers was recorded as 
1.54 and 1.62 Mg m–3 respectively. Intensive use of heavy 
tillage implements resulted in a compact layer at 15–
30 cm soil depth. Organic carbon content at the surface 
was twice that of the subsurface, which might be due to 
continuous addition of crop residues on the surface of 
cropped fields. Among primary soil particles, silt content 
was slightly lower in the subsurface soil layer than the 
surface layer, whereas clay content was higher in the sub-
surface layer. Eluviation–illuviation process due to down-
ward movement of water through the soil might have 
resulted in deposition of fine-size particles at greater depth. 
In general, the variation of bulk density and organic car-
bon content is higher in surface than subsurface soil lay-
ers, whereas the trend is reverse for silt content and clay 
content. Varieties of crops grown at different times and 
different blocks of the farm and the modified soil physi-
cal environment for each crop resulted in high variation 
of bulk density at the surface layer than subsurface layer. 
Moreover, differential growth behaviour of each crop re-
sults in different quantities of shoot and root biomass, 
 
 

Table 1. Descriptive statistics of soil properties 

   Standard  
Soil property  Depth (cm) Mean deviation 
 

Bulk density (Mg m–3) 0–15 1.54 0.09 
 15–30 1.62 0.08 
Organic carbon content (%) 0–15 0.62 0.22 
 15–30 0.29 0.17 
ln (% silt content) 0–15 2.51 0.27 
 15–30 2.50 0.31 
Clay content (%) 0–15 31.16 5.27 
 15–30 33.42 6.59 
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Table 2. Residual sum of square for different theoretical semivariogram models used to fit the  
 experimental semivariogram of soil properties at two depths 

 Residual sum of square 
 

Soil property Semivariogram model 0–15 cm depth 15–30 cm depth 
 

Bulk density (Mg m–3) Spherical 8.23 × 10–7 10.6 × 10–7 
 Exponential 6.54 × 10–7 9.33 × 10–7 
 Gaussian 5.62 × 10–7 8.05 × 10–7 
Organic carbon content (%) Spherical 4.89 × 10–5 3.50 × 10–5 
 Exponential 5.85 × 10–5 4.42 × 10–5 
 Gaussian 5.31 × 10–5 4.42 × 10–5 
 Hole-effect 4.23 × 10–5 1.09 × 10–5 
ln (% silt content)  Spherical 4.82 × 10–5 39.90 × 10–5 
 Exponential 8.03 × 10–5 39.30 × 10–5 
 Gaussian 11.30 × 10–5 36.80 × 10–5 
Clay content (%) Spherical 50.34 87.03 
 Exponential 57.30 91.82 
 Gaussian 48.16 75.77 

Bold faced values are the lowest value of residual sum of square for a particular soil property and for a 
particular soil depth. 

 
 
some of which were incorporated during tillage. For ex-
ample, the amount of crop residue added over the soil 
surface is higher for cereal crops like rice, wheat and 
maize in comparison to pulse and oilseed crops. Hence, 
the variation of organic carbon content is higher in the 
surface layer than subsurface layer. Particle size distribu-
tion does not vary significantly in the surface soil layer. 
Mixing of soil during tillage operation resulted in less 
variation of particle size distribution at the surface layer 
than subsurface layer. 

Semivariogram of soil properties 

Residual sum of square for different theoretical semi-
variogram models (eqs (2)–(5)) to fit the experimental 
semivariogram values (Figure 2) for each soil property at 
two depths (0–15 and 15–30 cm) are given in Table 2. 
Among different theoretical models tested, the Gaussian 
model was found as the best fit in most cases. In case of 
organic carbon content, spatial variation for both the soil 
depths was best described by the hole-effect model. This 
indicates the periodic appearance of homogeneous patches 
of organic carbon content in two-dimensional spaces. The 
spherical model was best-fitted in only one case, i.e. for 
fitting the experimental semivariogram values for ln(silt) 
at 0–15 cm depth. Semivariogram parameters (range, 
nugget and partial sill) for each soil property with the 
best-fitted model are presented in Table 3. For bulk den-
sity and major textural separates, range varied from 900 
to 1200 m. This indicate that bulk density, and silt and 
clay contents of two locations separated with lag distance 
below 1 km were spatially correlated with each other. 
Beyond this lag distance, the existing variation is defined 
as random variation. Organic carbon content was spa-

tially correlated for a short lag distance, i.e. around 
500 m. Nugget (C0) defines the micro-scale variability 
and measurement error for the respective soil property, 
whereas partial sill (C) indicates the amount of variation 
which can be defined by spatial correlation structure. Out 
of the total variation, nugget component was 50% for 
bulk density, which shows that the micro-scale variation 
of this property was relatively high. Moreover, support 
area for measuring the bulk density was too small (7.1 cm 
in diameter) to average the micro-scale variations in the 
field. Minimum sampling distance in this study was 
57.8 m, which may be too small to capture the variability 
at small lag. For organic carbon content, nugget compo-
nent was around 75% of the total variance for 0–15 cm 
soil depth. For particle size distribution, nugget compo-
nent was less than 50% for both silt and clay content. Silt 
content at 0–15 cm soil depth was found to be the best in 
terms of spatial correlation structure. Clay content was 
also highly spatially correlated and spatial correlation 
structure was better than that of bulk density and organic 
carbon content. Magnitude of spatial variance was higher 
in surface than subsurface layer for bulk density and or-
ganic carbon content, and reverse was the trend for silt 
and clay content. Similar findings were also pointed out 
from the classical statistical variance. 

Kriging and cross-validation 

Spatial maps prepared through ordinary kriging using the 
semivariogram parameters were cross-validated by leav-
ing one sample out and predicting for that sample loca-
tion based on rest of the samples. Evaluation indices 
resulting from cross-validation of spatial maps of soil 
properties are given in Table 4. Except for three cases the
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Table 3. Semivariogram parameters of soil properties of IARI farm 

Soil property Depth (cm) Semivariogram model Range (m) Nugget (C0) Partial sill (C) 
 

Bulk density (Mg m–3) 0–15 Gaussian 1053 0.005 0.005 
 15–30 Gaussian 1201 0.004 0.004 
Organic carbon content (%) 0–15 Hole-effect 450 0.035 0.012 
 15–30 Hole-effect 550 0.014 0.022 
ln (% silt content)  0–15 Spherical 902 0.004 0.090 
 15–30 Gaussian 1224 0.064 0.069 
Clay content (%) 0–15 Gaussian 994 5.421 32.163 
 15–30 Gaussian 1179 15.086 49.690 

 

 
 

Figure 2. Semivariogram of soil properties. (a) Bulk density (Mg m–3); 
(b) Organic carbon content (%); (c) ln (% silt content), and (d) Clay 
content (%).Experimental semivariogram for (•) 0–15 cm soil depth, 
( ) 15–30 cm soil depth; Fitted semivariogram for (—) 0–15 cm soil 
depth, (----) for 15–30 cm soil depth. 

 
 

Figure 3. Krigged maps of soil properties for 0–15 cm soil depth. (a) 
Bulk density (Mg m–3), (b) Organic carbon content (%), (c) Silt content 
(%), and (d) Clay content (%). 
 
 
G value was greater than zero, which indicates that spa-
tial prediction using semivariogram parameters is better 
than assuming mean of observed value as the property 
value for any unsampled location. This also shows that 
semivariogram parameters obtained from fitting of ex-
perimental semivariogram values were reasonable to de-
scribe the spatial variation. Although the G value for three 
cases was below zero, inclusion of more number of samples 
might have led to proper fitting of experimental semi-
variogram and describe the spatial variation in a better way. 
 Spatial maps of basic soil properties for 0–15 and 15–
30 cm soil depth prepared through ordinary kriging are 
presented in Figures 3 and 4 respectively. The southern 
part of the farm is higher in bulk density (>1.59 Mg m–3) 
at the surface, but lower at the subsurface than other parts 
of the farm (Figure 3 a). For the northwestern part of the 
farm, bulk density is 1.47–1.52 Mg m–3 at the surface and
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Table 4. Evaluation performance of krigged map of soil physical properties through cross- 
 validation 

Soil property Depth (cm) MAE MSE G 
 

Bulk density (Mg m–3) 0–15 0.074 0.008 –7.16 
 15–30 0.053 0.005 18.90 
Organic carbon content (%) 0–15 0.177 0.043 6.44 
 15–30 0.132 0.032 –18.09 
ln (% silt content) 0–15 0.175 0.051 29.21 
 15–30 0.229 0.084 10.37 
Clay content (%) 0–15 3.761 27.609 –1.51 
 15–30 4.490 34.467 18.96 

 

 
 

Figure 4. Krigged maps of soil properties for 15–30 cm soil depth. 
(a) Bulk density (Mg m–3), (b) Organic carbon content (%), (c) Silt 
content (%), and (d) Clay content (%). 
 
>1.67 Mg m–3 at the subsurface. This shows the presence 
of compacted subsurface layer in the northwestern part of 
the farm, possible due to continuous rice cultivation in 
these areas. Increase in bulk density in the east-to-west 
direction was also observed. Except for the southern part 
of the farm, a general trend of increase in bulk density 
with depth was observed. Spatial map of organic carbon 
content (0–15 cm) shows that 80% of the farm has me-
dium organic carbon content (0.5–0.75%) and some patches 
of organic carbon content were also observed from the 
map (Figure 3 b). For the subsurface layer (Figure 4 b), the 
same pattern was followed with organic carbon content in 
low category (<0.5%) for maximum part of the farm. In 
general, organic carbon content was higher in the surface 
than subsurface layer for the entire farm area. Spatial map 
of silt content (%) shows that it decreases in the east-to-
west direction for both surface (Figure 3 c) and subsur-

face (Figure 4 c) layers. The western part of the farm was 
slightly higher in silt content for the surface layer than 
subsurface layer. For other parts of the farm, there was no 
significant difference in silt content between the surface 
layer and subsurface layer. Figure 3 d shows that except a 
few patches, clay content was <34% for the surface layer. 
For subsurface layer (Figure 4 d), clay content was higher 
than the surface layer. For the western, northwestern and 
southwestern parts of the farm, clay content was around 
4–6% higher in the surface than subsurface layer. 

Spatial map of water content at field capacity and 
permanent wilting point 

Spatial maps of θFC and θPWP were prepared by interpolat-
ing basic soil property followed by linking the maps using

 
Figure 5. Spatially predicted map of water content for IARI farm. 
Water content at field capacity for 0–15 cm soil depth (a) and for 15–
30 cm soil depth (b). Water content at permanent wilting point for 0–
15 cm soil depth (c) and for 15–30 cm soil depth (d). 
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Figure 6. Observed values of water content at field capacity and permanent wilting point vs their predicted values from the respective spatial maps. 
 
 
PTFs. Another way to generate the maps of θFC and θPWP 
is to predict the hydraulic parameters using PTFs and 
then by interpolating the point predicted values35. In the 
first approach, interpolation error for the map of basic 
soil property may be propagated multiple times, but the 
spatial maps of basic property may be further used for 
farm-level planning or modelling environmental proc-
esses. Moreover, in regionalized application, spatial map 
of hydraulic parameters generated through first approach 
will be significant35. Spatial maps of θFC and θPWP gener-
ated through the first approach are given in Figure 5. Water 
content at field capacity increased in the east-to-west di-
rection of the farm for both surface and subsurface layers. 
The value of θFC (%, w/w) varied from 15.88 to 25.48% 
for the surface layer and 15.00 to 23.78% for the subsur-
face layer. Maximum water content was found at the 
northwestern part of the farm, where clay content was the 
highest. Similar type of spatial trend was also observed 
for the map of θPWP. The value of θPWP (%, w/w) varied 
from 6.72 to 11.92% for the surface layer and 7.52 to 
12.21% for the subsurface layer. Spatial maps of θFC and 
θPWP, prepared from the map of basic soil properties and 
PTFs were evaluated on observed points of θFC and θPWP. 
Observed values of θFC and θPWP for the sampling loca-
tions in this study were plotted against their predicted 
values from the spatial maps (Figure 6). Scatter plot of 
observed and predicted values and their spread around the 
1 : 1 line was better for θPWP than θFC. Root mean squared 
residual (RMSR) of predicted values of water content 
from the spatial map was 4.85–5.99% (w/w) and 1.81–
2.06% (w/w) respectively, for θFC and θPWP. The magni-
tude of RMSR was almost same when these two hydraulic 

parameters were predicted from point measurements of 
basic soil property. Therefore, the spatial maps generated 
for θFC and θPWP may be used for farm-level planning of 
crop selection at different blocks of the farm. Spatial pre-
diction uncertainty needs to be further tested for detailed 
application of such types of maps. 

Conclusion 

Bulk density and organic carbon content show large amount 
of nugget variation, which indicates the sum of micro-
scale variation and error. Spatial correlation of bulk den-
sity and organic carbon content may be better described 
through sampling with fine grids. Particle size distribu-
tion shows better spatial correlation structure than bulk 
density and organic carbon content. Gaussian model fits 
the experimental semivariogram of basic soil properties 
better than other theoretical models, with exception for 
organic carbon content. Organic carbon content shows 
periodic variation over two-dimensional spaces. There-
fore, the hole-effect model was found the best to fit the 
experimental semivariogram of organic carbon content. 
Spatial correlation structure for both surface and subsur-
face soil layers remains the same, but the magnitude of 
spatial correlation differs. For bulk density and organic 
carbon content, magnitude of spatial variance is higher in 
the surface than subsurface layer, whereas reverse is the 
trend for silt and clay content. Cross-validation of kriged 
map shows that spatial prediction of basic soil properties 
using semivariogram parameters is better than assuming 
mean of the observed value for any unsampled location. 
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Evaluation of spatial maps of θFC and θPWP showed rea-
sonable accuracy of these two hydraulic parameters for 
farm-level or regional scale applications. 
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